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a  b  s  t  r  a  c  t

The  variables  affecting  the  direct  matrix  assisted  laser  desorption  ionization  mass  spectrometry-based
analysis  of  wine  for  classification  purposes  have  been  studied.  The  type  of  matrix,  the number  of  bottles  of
wine,  the  number  of  technical  replicates  and  the  number  of  spots  used  for  the  sample  analysis  have  been
carefully  assessed  to  obtain  the  best  classification  possible.  Ten  different  algorithms  have  been  assessed
vailable online 14 January 2012
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as  classification  tools  using  the experimental  data  collected  after  the  analysis  of fourteen  types  of  wine.
The  best  matrix  was  found  to  be  �-Cyano  with  a sample  to matrix  ratio of  1:0.75.  To  correctly  classify  the
wines,  profiling  a minimum  of  five  bottles  per  type  of  wine  is suggested,  with  a minimum  of  three  MALDI
spot  replicates  for  each  bottle.  The  best  algorithm  to  classify  the  wines  was  found  to  be Bayes  Net.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

Current efforts in wine quality control research rely on the
evelopment of fast and simple procedures to classify wines [1–4].
ine traceability is essential to preserve the identity of unique

uality traits against frauds or commercial disputes. Accordingly,
ineries invest resources in ensuring their customers that their
ines are unique and of high quality.

A rapid method to characterize and to classify wines is the so
alled wine fingerprinting. Each wine has a characteristic pattern of
ompounds that makes it unique. Such patterns are obtained from
omponents of the wine, such as volatile compounds, proteins, pep-
ides, or other type of organic molecules, such as tannins [1,5,6].
hese patterns are generally known as the wine’s fingerprint.

At  present the use of volatile compounds is the most popu-

ar method to classify wines by fingerprinting them. This method
elays in the use of gas chromatography mass spectrometry,
C–MS. GC–MS is time consuming, which severely hampers this

∗ Corresponding author at: Bioscope Group, Physical Chemistry Department, Sci-
nce Faculty/Facultad de Ciencias, As Lagoas, E-32004 Ourense, Spain.
el.: +34 610 835 903; fax: +34 988 387 001.

E-mail address: jlcapelom@uvigo.es (J.L. Capelo).

039-9140/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
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technique by not allowing it to be used in large-scale trials.
Recently, some researchers have focused on the wine’s proteomic
content in order to use it as the targeted wine’s component from
which the wine’s fingerprint is obtained [1,2,7,8]. The use of the
wine’s protein/peptide fraction requires intensive sample handling
and it is time consuming. In addition, it is also expensive, if large
sets of samples are analyzed.

The use of matrix assisted laser desorption ionization, MALDI-
based mass spectrometry in fingerprinting has been extensively
used to classify samples such as plasma or serum [9–11]. MALDI
can be utilized in the direct mode, in which the sample is directly
placed onto the MALDI-target for analysis without any sample
treatment. The use of the direct-MALDI analysis has a number of
advantages, which makes it an ideal tool for wine fingerprinting.
First, the sample treatment required is minimum. The wine needs
only to be filtered, then the wine is mixed in the MALDI target with
an adequate matrix and the sample is ready for analysis. Despite
of its great potential for wine classification, the direct-MALDI
analysis has not been extensively used yet [12,13]. In addition, the
few works already published on this matter do not address key

analytical points regarding the MALDI analysis. Thus, a number
of parameters such as the normalization of MALDI spectra, the
influence of MALDI matrix, the number of technical replicates and
the number of MALDI plate spots replicates are missing in the
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Table 1
Selected wines to mass spectrometry analysis.

Code Wine Grape Type

Aa VegaVerde Airén, Macabeo
Ba Lambrusco Dell’Emilia Lambrusco
Ca L’Antigón Macabeo, Merseguera
Da Viña do Val Macabeo, Palomino, Sauvignon Blanc
Ea Comportilho Rioja Viura
F Coto de Gomariz Albariño, Godello, Loureira, Treixadura
G Vilerma Blanco Albariño, Godello, Treixadura
H  Beade Primacia Treixadura
I Gran Reboreda Treixadura
J Viña Reboreda Godello, Palomino, Treixadura, Torrontés
K Condes de Albarei Albariño
L Castillo de Liria Sauvignon, Viura
M  Pazo Blanco Treixadura
N Joaquín Rebolledo Godello
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ing) library [23] and they were executed with default parameters,
except for IBk, configured to assess the adequate performance of the
proposed models and also to guarantee the validity of the results,
we conducted an ad hoc LOO (Leave-One-Out) cross-validation
a Represents the wines used for preliminary experiments to determinate the most
ppropriate MALDI matrix.

cademic articles published to date dealing with direct MALDI
ine fingerprinting [14].

The  present research demonstrates the great potentiality of the
irect-MALDI analysis of fingerprinting of wine. Reliable results
ere obtained after a systematic study of the influence of (i) the

ype of the MALDI matrix, (ii) the number of the individual, techni-
al and instrumental replicates needed to obtain appropriate data
nd (iii) the normalization of the intensities of the signals of the
ALDI spectra.

.  Experimental

.1. Reagents

Trifluoroacetic acid (TFA, 99%) was purchased from Riedel-de
aäen (Seelze, Germany). Acetonitrile (ACN, 99.9%) was pur-
hased from Panreac (Barcelona, Spain). All the materials were
sed without further purification. 2,5-dihydroxybenzoic acid
DHB), sinapinic acid (SA) and alpha-cyano-4-hydroxycinnamic
cid(CHCA) for MALDI-TOF-MS were obtained from Fluka (Buchs,
witzerland) and were used as MALDI matrix. Peptide Calibration
tandard II from Bruker was used as mass calibration standard for
ALDI-TOF-MS.

.2. Samples

A  set of fourteen different Spanish wines presented in Table 1
ere selected and five bottles of each wine were acquired from

ocal markets for further analysis.

.3. Sample treatment

Each  sample of wine was filtered through a 0.22 �m pore size
ellulose acetate membrane filter. Three MALDI matrices were
repared as follows. Alpha-cyano-4-hydroxycinnamic acid, CHCA,
0 mg/mL  in 50% ACN/0.1% TFA. 2,5-dihydroxybenzoic acid, DHB,
0 mg/mL  in 90% ACN/0.1% TFA. Sinapinic acid, SA, 20 mg/mL in 30%
CN/0.3% TFA. Each filtered sample was mixed with each matrix in

 1:1 ratio and 1 �L of this mixture was spotted in quintuplicate
nto a MALDI-TOF-MS ground steel plate. After that, different ratios
etween the wines and the MALDI matrix selected were tested in
uintuplicate as follows: 1:1; 1:0.75; 1:0.5; 1:0.25.
.4. MALDI analysis

The  MALDI-TOF analysis was performed using the Ultraflex II
ALDI-TOF/TOF instrument from Bruker Daltonics equipped with
lanta 91 (2012) 72– 76 73

a  200 Hz Smartbeam laser system. Data was  acquired using Flex-
Control 3.3.92.0 (Bruker Daltonics). Close external calibration was
performed with the monoisotopic peaks of the bradykinin 1-7
(757.3992), angiotensin II (1046.5418), angiotensin I (1296.6848),
substance P (1347.7345), bombesin (1619.8223), renin substrate
(1758.9326), ACTH clip 1-17 (2093.0862), ACTH 18-39 (2465.1983),
and somatostatin 28 (3147.4710). The mass spectrometer was
operated with positive polarity in reflectron mode and spectra were
acquired at each spot position at a constant power and in the mass
range of 40–1500 Dalton, Da. Peak lists and spectral processing
were done in FlexAnalysis 3.3 (Bruker Daltonics). The peak lists
were generated from de mass spectra using the peak detection algo-
rithm SNAP (sophisticated numerical annotation procedure). The
signal to noise was  established at six and the baseline subtraction
was done using the TopHat algorithm.

2.5. Machine learning algorithms and computational protocol

In  order to systematically study the influence of the analyzed
conditions (type of the MALDI matrix, number of the individual and
technical replicates and use of the MALDI spectra normalization of
signal intensities) the following six well-known Artificial Intelli-
gence, AI, algorithms were selected: Bayes Net [15], C4.5 [16], IBk
(Instance Based k-nearest-neighbor) [17], Naïve Bayes [18], Random
Forest [19] and Support Vector Machine trained with SMO (Sequen-
tial Minimal Optimization) [20]. In addition, two classical ensemble
alternatives, namely AdaBoost [21] and Bagging [22] using different
combinations of successful base classifiers, were also used. All the
selected classifiers are included in the Weka ML (Machine Learn-
Fig. 1. MALDI-TOF-MS spectra obtained of two different matrices. (A) Mixture of
wine and CHCA matrix with a ratio of 1:1. (B) Mixture of wine and sinapinic acid
matrix with a ratio of 1:1.
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Fig. 2. MALDI-TOF-MS spectra obtained of different ratios of wine/CHCA matrix

xperiment [24] in which each of the 5 spots/bottle were separated
orm the training samples to predict their corresponding class. All
he runs were executed on the AIBench platform [25] using a Weka
lugin.

In order to precisely measure the accuracy of each AI technique
e usedboth (i) the percentage of correct classifications (accu-

acy) and (ii) the Cohen’s Kappa statistic [26]. The Kappa index
ompensates for classifications that may  be due to chance and it
s considered a standard statistically robust meter useful to mea-
ure the accuracy in multiclass problems [27]. Kappa values range
rom 0 (random classification) to 1 (perfect classification) and it is
alculated as shown in Expression (1).

appa = Pr(a) − Pr(e)
1 − Pr(e)

(1)

here  Pr(a) represents the observed accuracy and Pr(e) stands for
he probability which is due to chance.

. Results and discussion

.1.  Influence of the matrix used

It is well known that there is no universal matrix for the MALDI
nalysis. As a general rule matrixes are chosen experimentally using
he trial by error method. From the common matrices generally
sed in the MALDI analysis we assessed 2,5-dihydroxybenzoic acid,
HB; sinapinic acid and �-Cyano-4-hydroxycinnamic acid, CHCA.
he first matrix is best suited for protein, peptides carbohydrates
nd synthetic polymers, the second one for proteins and peptides
nd the third one is recommended for peptides. To the best of
ur knowledge, the analysis of red wine by direct MALDI was only
ttempted once by Carpenteri et al. [13]. These authors have found

hat DHB is the most suited MALDI matrix from a series of tested

ALDI matrices However, in our laboratory conditions this matrix
as found troublesome, since it was verified that some samples

ook as long as 24 h to dry. This phenomenon was observed for
fer the best ratio for wine classification. (A) 1:0.25. (B) 1:0.5. (C) 1:0.75. (D) 1:1.

different  wines. Therefore, DHB was discharged and further exper-
iments were carried out with sinapinic acid and CHCA.

Fig.  1 shows MALDI spectra of white wine spotted with the
aforementioned matrices. A quick inspection of this figure with the
naked eye reveals that the spectrum obtained with the �-Cyano has
a better signal to noise ratio for most of the peaks than the spectrum
corresponding to sinapinic acid. A set of experiments was devised
to test the efficiency of both matrices when they were used for fin-
gerprinting wine. The results are shown in Table 2. The comparison
was performed using ten different algorithms of classification. In
this set of experiments, for each type of white wine (five wines),
five bottles were used. For each bottle, one sample was  prepared
and was spotted in the MALDI plate in quintuplicate. Finally, the
spectra thus obtained for each type of wine were used to classify
the group of five wines under study. A total of 125 spectra were used
(5 wines × 5 bottles/wine × 5 spots/bottle). The peaks of the differ-
ent spectra were aligned using an error of 150 ppm. Results shown
in Table 2 clearly demonstrate that wine classification was  better
achieved when the spotting was  carried out with the CHCA matrix
rather than with the sinapinic acid matrix, as a higher accuracy and
Kappa scores were obtained. In brief, the closest is the accuracy
to 100 and kappa to 1 the better is the classification achieved (for
details on statistics refers to Section 2.5). This result was consis-
tently obtained with all the algorithms used. This means that all
the algorithms suggest CHCA matrix as the best one to be used to
classify the wines. This study was  done using only the m/z values
of the ions observed in the spectra. However, it was assessed that
when m/z values of the ions and their relative intensities were used,
the values of accuracy and kappa were improved.

3.2. Influence of matrix to sample ratio
Sample treatment must be as reproducible as possible, espe-
cially the matrix/sample crystallization process. Indeed, variables
such as temperature, handling time, and number of steps involved
in the sample treatment have been identified as important
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Table 2
Results of the performance of the CHCA and SA matrices studied. Values of accuracy and Kappa as a function of the classification algorithm used.

Algorithm With intensities Without intensities

Accuracy Kappa Accuracy Kappa

CHCA SA CHCA SA CHCA SA CHCA SA

Bayes Net 95.20% 84.80% 0.94 0.81 93.60% 78.40% 0.92 0.73
C4.5  94.40% 84.00% 0.93 0.80 90.40% 78.40% 0.88 0.73
IBk 88.00%  59.20% 0.85 0.49 91.20% 64.00% 0.89 0.55
Naïve  Bayes 88.00% 80.80% 0.85 0.76 93.60% 76.80% 0.92 0.71
Random  forest 94.40% 82.40% 0.93 0.78 90.40% 78.40% 0.88 0.73
SMO  92.80% 84.80% 0.91 0.81 91.20% 77.60% 0.89 0.72
AdaBoost.M1 + IBk 89.60% 63.20% 0.87 0.54 88.80% 72.00% 0.86 0.65
AdaBoost.M1 + C4.5 93.60% 88.80% 0.92 0.86 91.20% 78.40% 0.89 0.73
Bagging  + IBk 90.40% 61.60% 0.88 0.52 89.60% 67.20% 0.87 0.59

0.87 86.40% 79.20% 0.83 0.74
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Fig. 3. (A) Average of K value obtained for all classifiers used taking into account the
influence of the number of replicates and bottles used, with intensities. (B) Average
Bagging  + C4.5 93.60% 89.60% 0.92 

arameters. These parameters should be carefully considered and
ontrolled to obtain reproducible data in mass spectrometry fin-
erprinting of complex samples [28]. The excellent reproducibility
etween replicates obtained in this work with �-Cyano matrix,
an be explained through three main reasons. First, the sample
andling is very simple: the wine is filtered. There are no more
reparation steps. This reduces sample contamination and sam-
le loses. Second, crystallization with �-Cyano matrix produces
mall crystals, uniformly distributed throughout the spot, with an
xcellent reproducibility between spots. Third, baseline drift is cor-
ected by fitting an algorithm that describes de curvature of the
aseline and subtracts that from the originating baseline thereby
etting a zero baseline. This is done using the software provided by
he manufacturer of the MALDI used (Flexanalysis 2.4®). In addi-
ion, laboratory temperature was always maintained constant at
1 ± 1 ◦C. Therefore, we studied only the influence of the ratio sam-
le:matrix, because this is one of the variables that most influence
ALDI spectra. For instance, if the ratio is too high the matrix ions

an hide the signals that belongs to the sample ions. On the other
and, if the ratio is too low, the ionization can fail and no signal

s recorded. For this reason a set of experiments was  devised to
nd out the best wine/�-Cyano ratio. The ratios assessed were 1:1;
:0.75; 1:0.5; 1:0.25. The resulting spectra are shown in Fig. 2 and
annot be inspected with the naked eye, as all the spectra seem
imilar. However, when an algorithm (SNAP) was  used to inves-
igate the differences between them, it was found that the ratio
:0.75 provided the mass list with the highest record of m/z ions.
onsequently, this ratio was used in further experiments.

.3. Influence of the number of sample replicates, technical
eplicates and instrumental replicates on the wine classification.

The  MALDI analysis has as main drawback the variance caused
y the intra-spot and between spot data variability. As explained
bove, in our case the performance was very promising rendering
ata with high accuracy and reproducibility. However, the min-

mum number of bottles of wine and the minimum number of
echnical replicates necessary to obtain an appropriate wine clas-
ification remained unknown. Therefore a set of experiments was
evised as follows: fourteen wines were purchased from local mar-
ets. Five bottle of each wine were acquired. From each bottle one
ample was prepared (see Section 2), and for each sample five spots
ere prepared in the MALDI plate. Data was treated with differ-

nt classification algorithms. From each algorithm a K value was
etrieved. The medium value of K, obtained from the ten algo-

ithms used is presented in Fig. 3 as a function of the number
f bottles and the number of spots used for each bottle. In addi-
ion, the results for the ten algorithms are presented individually in
ig. 1 of the supplementary material. The classification study was
of K value obtained for all classifiers used taking into account the influence of the
number of replicates and bottles used, without the intensities.

done in two  different ways. In the first study, all the information
used was the list of m/z ions. In the second study, m/z ions and their

intensities were used.

It  was  found that intensity is a variable that adds information,
as the classification obtained after adding intensity as a variable
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as better. For instance, the value of the K medium was  increased
rom 0.834 to 0.874 for the classification done using five bottles
nd five spots replicates for each bottle. However, for some of
he algorithms the classification was not improved when the
ntensity was added as additional information. Consequently, it is
ecommended that researchers routinely repeat their classification
ith multiple algorithms and consider the K medium as the best

alue.
Data presented in Fig. 3A suggests that the minimum number

f spots needed to work with is of three for each wine. More inter-
stingly, the number of bottles to be used seems to be more critical
han the number of spots. The minimum number of bottles recom-

ended to be used for classification is five.

. Future prospects

The  results presented here suggest that the MALDI-based fin-
erprinting of wines is a cheap and fast approach valuable for the
lassification of the white wine. Through a careful selection of vari-
bles such as the number of bottles and the number of MALDI spots
eplicates used, and through the use of adequate algorithms, wine
lassification seems to be achievable. The next step in this research
ill consist in launching a large-scale study, including as many

ypes of grape and wineries as possible. Furthermore, the study
ill be extended to red wine.

. Conclusions

It  has been demonstrated that the direct MALDI analysis of wine
s an effective method to classify wines. A total of fourteen white

ines were correctly classified (see supplementary material, Table
1). It has been possible to classify wines by grape type and win-
ry, including three wines made from the same grape but from
ifferent wineries. The matrix recommended to be used is �-Cyano
ith a sample:matrix ratio of 1:0.75. To correctly classify the wines,
rofiling a minimum of five bottles per type of wine is suggested,
ith a minimum of three MALDI spot replicates for each bottle.

he best algorithm to classify the wines was found to be Bayes Net,
lthough it is recommended to use more than one algorithm to test
he robustness of the procedure.
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